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ABSTRACT OF THE THESIS

Optimum Design of Columns Supported by

Tension Ties

by

Hagen Richard Mauch

Master of Science in Engineering

University of California, Los Angeles, 1966

Professor Lewis P. Felton, Chairman

When optimizing simple thin-walled columns on a

weight basis, the maximum obtainable stress is found to be

that at which local and general buckling failure occur

simultaneously. This stress can be expressed as a function

of load and distance, allowing the introduction of the

xi



structural index P/L 2 (P = buckling load, L = length of

the column), for equal values of which all dimensionally

similar columns develop the same stress at failure. At

low values of the structural index, the optimum stress is

low, indicating that the simple column is not an efficient

structure in such circumstances. It has been found that

expansion of the cross-section, for example, by using

tension ties which serve to provide intermediate elastic

support for the column, allows the column to operate at

higher stress levels, thereby increasing efficiency.

This thesis summarizes a method of analysis and

presents a procedure for optimizing tension-tie supported

thin-walled cylindrical columns. The optimized column

for a given structural index is defined by a particular

diameter, wall thickness, tie prestress, tie cross-sectional

area, tie angle, and strut dimensions. For the cases

considered it is found that, in the low range of the

structural index, the tie supported column offers a poten-

tial weight saving of up to 50% over the simple tubular

column.

xii



SECTION 1

INTRODUCTION

The primary function of a structure is to transmit

forces through space, where, from the designer's point of

view, the objective often is to do this with the minimum

possible weight. For any structure that fails as a result

of instability under compressive loading, the maximum

obtainable stress depends, in a complex manner, on the pro-

perties of the material and the geometric properties of the

structure. To apply the principle of dimensional similarity,

the structural index P/L 2 is introduced (P m buckling load,

L = column length). This quantity can be considered as a

measure of the loading intensity. All dimensionally similar

columns having the same value of structural index will de-

velop the same stress at failure. Therefore, for a parti-

cular material and a particular type of cross-section, an

easily obtainable relationship between optimum stress and

structural index constitutes the information needed for the

design of the entire family of minimum weight simple columns.

At low values of the structural index, the optimum

stress is far below the elastic limit of most structural

materials and an expansion of the cross-section will allow

the column to operate at a higher stress level, thereby

possibly increasing efficiency, from a weight standpoint.

In the age of space technology the long column with small
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compression load becomes more and more interesting and,

considering the extremely high cost per pound of orbited

load, even the smallest weight savings is appreciated.

The thin-walled circular tube, which is the most

efficient simple column, is chosen as a basis for the in-

vestigation. The weight of the simple column is a minimum

when the allowable stress a is a maximum. To find the maxi-

mum values of a both primary buckling (Engesser formula)

and local buckling are considered and the optimum design is

obtained when both failures can occur simultaneously.

Using two equal columns and equipping one with ten-

sion ties always results in an increase of maximum stress,

hence a decrease in weight of the central tube is possible;

however, additional weight is added in conjunction with

ties and struts. Once the structural index P/L 2 is speci-

fied, the problem is then to define the parameters asso-

ciated with the tie supported column like column diameter,

wall thickness, tie cross-sectional area and tie angle

to obtain minimum weight. The column supported by tension

ties considered herein consists of three parts: a thin

walled tube with circular cross-section, tension ties, and

struts, as shown in Fig. i. The theory of analyzing such

columns has been developed previously [i] and the improved

efficiency is proved in tests. [I] Nevertheless in none of

the solutions was optimization of the structure with re-

spect to weight attempted, as has been done for the simple
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column. [2]

For the actual calculations the following assump-

tions are made:

a. The effect of the deformation of the struts

is negligible.

b. The connection between the struts and the

column and the connection between the ties and struts are

ideal hinges.

c. There is no initial eccentricity or crookedness

in the column.

d. _here is no lateral deflection before buckling.

e. The pretension in the wires is of such magni-

tude that at impending buckling the wires are stress free.

f. For small lateral deflection the axial deforma-

tion is negligible.

g. The angles between the planes of the ties are

equal.

h. The struts are distribu£ed symmetrically with

respect to the midpoint of the column.

The optimum design can again be found by equating

the primary and local buckling stresses. The weight of the

column is a function of the above mentioned parameters and

a minimization yields optimum values of these parameters.

Comparing the optimum weight of the simple column

with the optimum weight of the column supported by tension



ties for identical values of the structural index will

show how much more efficient this supported column can be.

v



SECTION 2

GENERAL THEORY OF THE COLUMN SUPPORTED BY TENSION TIES

2.1 Force and deformation relationship up to the instant

of bucklin_

The following theory dealing with the mechanical be-

havior of the column supported by tension ties is based on

Ref. 1 and is repeated here in a slightly modified form for

completeness. The geometry of the supported column is

sketched in Fig. 1 and Fig. 2.

2.1.1 Pretension

Let the pretension in a tie in the jth panel

be denoted by Toj. If there is no external load applied

in the x-direction, then the force in the column (Po)

induced by pretension is

Po = m Tol sin 81 (I)

where m is the number of tension ties.

Due to this load, the column has shortened a distance 6L O.

v

m Tolsin81

_Lo = A E L (2)
c c

From the equilibrium of forces in x-dlrection at any

joint, and by neglecting the effect of small angle changes

3

sin 8
1

Toj = Tol sin 8. (3)
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The elongation of the tie in the j
th

panel due to To_J

is therefore

___ sin 81 cj

ACoj = Toj AjEj = Tol sin 89 AjEj
(4)

By neglecting again small angle changes and with the

assumption that there is no lateral deflection before

buckling starts, then the component of tie deflection in

the x-direction is

(aCoj) x - nCoj sin 8j = Tol sin 81 A.E.CJ
33

(5)

and the total displacement in the x-dlrection is

n c.

(ACo) x = -->__ Tol sin O1 ---I--
AjEj

j=l

2.1.2 Relationship between external load and

internal forces

(6)

Let an external load P be applied to the strut

with tension ties that are tightened to a certain value of

initial tension. Then the force acting in the column will

be increased by the amount P
P

axial deformation will be

(Fig. 2) and the increase in

L
AL _ P

P P AcE c

.th
The force acting in a tie in the 3

(7)

panel is decreas-

ing by the amount Tpj.

is

Similar to equation (3) this force
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sin 8
1

(s)
Tpj = TpI sin 8j

T
pJ

The decrease in stretch in the axial direction due to

is similar to that given by equation (6).

n

(Acplx = TplsineI (9)
j=l 3 ]

Since ALp = (ACp)x, equations (7) and (9) give

n

AcE c _ cj (i0)

Pp = L Tpl sin 81 j=l_ AjEj

By taking the summation of the forces in a section at

the end of the strut (Fig. 3) and considering the fact that

the pretension forces in the column and tension ties are

in equilibrium regardless of the applied force P, it is

found that

P = m TpI sin 81 + Pp (ii)

Substituting Pp from equation (i0) in equation (ii) yields

P

T = (12)
pl A E m

sin 81<m+ c c _ c_

j=l

With the assumption that at the onset of buckling the ten-

sion ties are stress free, it follows that equations (12)
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and (3) must be equal, or simply

Tol = Tpl (13)

2.2 Lateral reactions produced by tension ties at

buckling load

Change in length and slope of the tension ties due to

lateral deflection have to be considered next. Let the

displacement of joint j in the direction perpendicular to

the column and in the plane of column and tie be denoted by

(ay) j. Then, as shown in Fig. 4 for small displacements,

changes in length of the ties may be expressed as

_cj - _(Ay)j_l-(_y)j] cos 8j÷E(_x)j_l-(_x)j_ sin 8j (14)

This is only valid if A 8j ÷ 0.

When the lateral deflection starts, the axial deflec-

tion (Ax)j_l-(_x) j is negligible and may be ignored.

Furthermore, it is assumed that there is no lateral dis-

placement at the end of the column and that the warping of

the planes of the ties is negligible. Equation (14) can

therefore be simplified to

and with

_cj - [(dy)j_l

ATj = Cj ACj

- (_y) j_ COS 8j (15)



AT§ = _ [(Ay) j_l - (Ay)j] COS 8j (16)

NOW consider the case in which the deflection of the

column occurs in the direction § (Fig. 4) in the x-§ plane.

be the deflection of joint j in the § direction
Let (dJ)j

and (_Y) ji be the components of (_)j in the plane of

column and tie i (i - 1,2,3..m). Let 8 i be the angle be-

tween the plane of column and tie and the x-§ plane. Then

referring to Fig. 4

(Ay)j i -- (_§)j COS 8i (i " 1,2,3,4...m)

Assuming that the angles between the planes of the

ties are equal, then if 81 = 8, it follows that

2_
=--+ 882 m

S3 m

(17)

(18)

m-___l2_ + 8
8m = m

Let the change in length of the tie i in the panel j

then equation (15) may be written as follows
be (_cj) i[

(Acj)i" (_§j-I - A§j) cos %j COS 8 i (19)
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2.3 Lateral reactions when some ties are relaxed at the

instant of buckling

If the ties are stress free at the instant of buckling,

some ties are relaxed for an infinitesimal amount of buck-

ling deflection. This gives some constraint to the initial

tension which shall be considered later. With this assump-

tion it is clear that ties with an angle 8i defined by

,/2 • 8i < 3_/2

will be relaxed and the ties with an angle 8i of

-,/2 • 8i • +_/2

are going to be stretched.

For three or four tension ties only one or two ties,

but not more than two ties can possibly !ay_in the region

from -,/2 to + _/2. Therefore in those cases only a maxi-

mum of two tension ties can be stretched. Assume now first

that tension tie i = 1 and i = m are stretched. The per-

pendicular directions to the column axis in each of the

planes containing these ties are called Yl and Ym"

(Fig. 5, Fig. 6, Fig. 7).

In the direction of §, the lateral components of the

respective tensile forces produced by the changes in length

of the ties are (Fig. 6)
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A.E,

(Rjj)§ 1 = - C_. (_cj) 1 COS 8 cos 8j
]

h5 [

cj L j-i - (AS)j] COS 2 %j COS28 (20)

where the angle 8m is replaced by the expression calculated

in equation (18).

In order to maintain equilibrium of forces in the n

direction, the following condition must be satisfied (Fig.

6)

with

or

(Rjj)n I = (Rjj)n m (22)

(Rjj)nl = (Rjj)§I tan 8

tan (m-i 2_ + 8)
(Rjj)(Rjj) nm §m m

sin 8 cos B - sin( m-I 2%+8)cos( m-I 2_+_)
m m

(23)

This equation can only be satisfied for

k.j ¸

= _/m

With this result the actual direction of deflection is

known and this particular § direction is denoted as y.(F_3)
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The reaction force Rjj in this y direction is given by

Rjj = (Rjj)y I + (Rjj)y m

where

= _ 33cj (_Y)j-I-(Ay)j COS28j B (24)

B m 2 cos28/m = 2 cos2(./m)

If only one tension tie is stretched, there is only one

case of equilibrium possible, namely when 8 = 0. In this

case

Rjj = (Rjj)y I

where

AJ5 [( yl ( yl] cos2 e B (2s)
- Cj j -i- j j

B= 1

The lateral reactions are due to the action of the ties in

th
the j panel on strut plane j. The reaction on strut

th
plane j due to the ties in the (j+l) panel is given by

Rj (j+l) = + _'+_ [(Ay)-(Ay) ] COS2 8 B
Cj+ 1 j j+l j+l

(26)

Therefore the resultant reaction at joint j is obtained

by combining equations (24) or (25) with equation (26), as

follows:

v
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or

Rj = Rjj + Rj (j+l) (27)

Aj+IEj+!" [
Rj = CJ +I (y)j

- (Y)j+I] c°s2 8j+l B

Aj_ [(y) (y) j] COS2 8 B (28)
- cj j -I- j

where Ay is replaced by y, for convenience.

2.4 Bucklin@ theor_v

A strut with tension ties may be considered as a con-

tinuous beam on elastic intermediate supports as shown in

Fig. 8. In the case of simply supported ends a representa-

tion of the deflection curve in the form of a trigonometric

series is advantageous.

The deflection curve can be represented as

2_x . 3_xy = a I sin + a 2 sin -L-- + a3 sln--L--+ ..

k_ x

a k sin L (29)

Each term satisfies the boundary conditions, since

each term together with its second derivative becomes zero

at the end of the beam.

For the case of the column supported by tension ties,

the coefficients in the above series, and the buckling

load, are obtainable from an energy approach. The work done

by the longitudinal force p must be equal to the work done
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by the reaction force Rj plus the strain energy.

energy is defined as

The strain

U =R

EcI c

L

2

0

dx (30)

Introducing equation (28) and integrating yields

4 k --a
E I

c c _ k 4U = 4 L 3 ak

k= 1

(31)

Any change in the shape of the deflection curve results in

some longitudinal displacement at the hinge B. This dis-

placement is equal to the difference between the length of

the deflection curve and the length of the chord AB

In terms of the chosen coefficients this dis-(Fig. 8).

tance is

ks

_2 _ k2 2= _-_ a k (32)

k=l

and the work done by the external force P is therefore

k_ w

Wl = 4--L-PW2_ k 2 ak 2 (33)

k=l

v
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The displacements at the struts are simply (y) j and

the reaction forces Rj are linear functions of (y)j

[equation (28)]. That means the spring characteristic is

linear and the spring strain energy is

n -I n-i ®

_i _ i/2 - i/2_ _j 5Lh= L yjRj L ak sin L

_i j=l k=l

For a conservative system

(34)

W 1 - U + U 1

Therefore with equations (31) , (33) , and (34)

v
® 4 ® n-i

p 2 _ w ECIc _ _ _ k_ xj--4-L- k2ak 2= k4ak2+i/2 Rj ak sin4 L_ L
k=l k=l j=l k=l

(35)



SECTION 3

OPTIMUM DESIGN OF THE SIMPLE COLUMN

The theory of optimum design of the simple column

is presented in [2] and the most important results are

repeated here for convenience.

The Engesser formula for column buckling is

w2E t

acr = (L/0)2 (36)

and may be expressed in terms of the structural index P/L 2,

using the proper value of 0 for a thin-walled circular tube

2
8 a

P cr

D
_ Et _-

(37)

For local buckling

ac r s k2 _/t
(38)

where k 2 _ 0.4.

Solving equation (38) for D/t and substituting a
cr

(i.e., acc s Ocr) from equation (37) yields an optimal

value for D/t:

k 2 E

<_>opt " 2 ---- (39)

16
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Or, in terms of the structural index and the stress a,

these equations can be combined to yield

where

3
P 8

_-_ = ,k 2 E 2 T3/2

E t
T _ n

E

(40)

For any given value of o from a particular stress-

strain curve, the value of P/L 2 may be calculated. The

weight is obtainable from the relation

. P/L 2 w (41)
W

where w is the specific weight.



SECTION 4

OPTIMUM DESIGN OF A COLUMN WITH ONE STRUT

4.1

that

Buckling theorz for the column with one strut

From the geometry of the system (Fig. 9) it is seen

81 w/2 + a cos 2 e I sin 2

e 2 = T/2 - a
cos 2 e = sin 2 a

2

Consider the first three terms of the sine series

2_ 3_
_x

y = a I sin -_- + a 2 sin _ + a 3 sin ---_x (42)L

and
4

_ Ec Ic lal2 a32]U = 4 L 3 + 16 a22 + 81
(43)

p 2 [a12 a32]
W 1 = _ + 4 a22 + 9 (44)

U1 - -_- 1 - a3 (45)

The reaction force is obtainable from equation (28).

with the assumptions that A 1 = A2, E 1 = E2, and c I = c 2 =

L

2 cos
, then

4 AIE 1

R = (a I - a 3) sin 2 a cOS a B (46)
L

18
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Introducing equation (46) in (45)

2 AIEI [a a32 ]Ul L sin2 2= a cos a B 1 - 2 ala 3 + (47)

If any coefficient ak in series (39) is given an in-

crease dak, the term (ak + dak) sin k_x/L replaces the term

ak sin k_x/L. This increase da k in the coefficient ak

represents an additional small deflection of the beam given

by da k sin k_x/L superposed upon the original deflection

curve.

The change in strain energy of the column, due to the

increase da k is

4

EcI c k 4
_ak_-_-Uda k = 2 L 3 ak dak

(48)

The change in work done by the compression load is

8W 1 2 k 2

_-_k dak = P _ 2L ak da k (49)

and the change in strain energy of the springs is

8U 1 2 sin2a cos s AIE 1 B _ 2

dak = _ _ (a12-2ala3+a3)
(50)

For a conservative system

_WI _U _UI

d ak = _ dak + _ dak

-v
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For K _ 1,2,3 this results in three equations

pw2 w4 EcI c 4 sin2a cos _ AIE 1 B

_-L-al = aI +
2 L 3 L

4

p2 _ EcI c

4 -_ a 2 = L3 16 a 22

(a I - a 3)

(51)

(52)

4
EcI c 4 sin2s cos s AIE 1 Bp2

9 _7-a_ = 81 +
2 L 3 a3 L (a3-al)

(53)

%._.-

Equation (52) states that the second buckling mode of

the simple column is a solution of this column supported

by tension ties. It can be seen that equations (51) and

(53) can only be satisfied if the following determinant is

zero.

4 E i
c c p 2 + g

L2

81

4
w EcI c

L 2

- i

9 p_ 2 +

- 0

(54)

where

_ 8 AIE 1 B sin2s cos
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TO extend the theory in the plastic region, the

modulus of elasticity of the column is replaced by the tan-

gent modulus. Considering, furthermore, local buckling, k

it can be shown that the moment of inertia I
C

placed by the expression [2]

must be re-

P Am 1 /-EEt
ic m 62 A m kl _- _ k2 _ P A (56)

where, as for the simple column, k 2 _ 0.4.

Introducing equation (56) in the above determinant,

and replacing E c with the tangent modulus E t yields

3

k2 3/2 E21 P\ _ 2

8o 2 T _L-T_ o_ +_ -

3 k2
3/2E2 P -9ow

(57)

--0

- AIE 1
K m 8 B sin2_ cos a

where T m Et/E and < m _- A

Expanding equation (57) yields

81 w3 k2 T3/2 E 2

2
(45o_ - 41K)

_/16 • 81w4a 2 - 90 • 32_o_ 2 + 412_ 2

(58)
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This equation should reduce to the solution for the

simple column in the limit. For the simple column the

cross section of the tension ties is zero, so that _ takes

the value zero. Substituting < = 0 in equation (58) yields

P 8a3,

L 9 k2, E2 (5 ±4) (59)

Considering the positive sign in the bracket, the buckling

formula for the first mode of the simple column (equation

(40)) is obtained. The negative sign yields the buckling

load for the third mode shape which is not critical. The

tension ties increase the buckling force in all modes, so

that the positive sign in equation (58) has to be chosen

to obtain the critical load.

For cylindrical tubes the factor k 2 is chosen as

0.4. < has the same dimensions as the structural index and

can be considered as something like a structural index of

the elastic support of the column and serves as a para-

meter in further calculations.

Equations (51) and (53) indicate that the buckling

shape resulting from the _fluence of the tension ties is a

combination of the natural first and third buckling mode

shape. This buckling mode shall be called "constrained

first buckling mode."

Equation {58) can be written in simplied form as
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p °2[- 0.326s 3/2E2 (i0. 325o- )+/ 5.0981
T a2-16.9097 Ka+K21

(60)

To observe the influence of the tension ties, the

"constrained first buckling mode" is calculated for an

actual case for some typical values of _ assuming a column

constructed of 2024-T4 aluminum alloy with material proper-

ties as shown in Fig. 10. The result is sketched in Fig.

ii and indicates that for various values of P/L 2 different

values of K result in curves which intersect the curve

plotted for the second buckling mode shape. Since at all

of these points two modes of failure occur simultaneously,

the optimum design is reached when K as a function of P/L 2

is chosen such that the graphs for the constrained first

buckling mode shape and the second buckling mode shape are

identical. This relationship can be found, when the struc-

tural index for the second mode is introduced in the left

hand side of equation (60). The second buckling mode shape

is given in equation (52) for the following structural

3
P 2a

j = _ k 2 E 2 T3/2

index

(61)

\j
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Combining equations (60) and (61) yields

45 2
K = 5-_ o_ = 7.93091 o

(62)

This result is independent of the properties of the chosen

material.

4.2 Weight assumptions

From Fig. 12 it can be seen that the weight of the

column with one strut and m tension ties is the summation

of

W 1 - the weight of the column

W 2 - the weight of the supporting

wires

W 3 - the weight of the strut

assembly (struts and connecting

ring)

4.2.1 Weight of the column

As given in equation (41) the weight of the

simple column is
P

Wl w V
(63)

4.2.2 Weight of the wires

W 2 = m w I A 1 L/ cos

W 2 m w I T 1

or L_= aI cos a L 2

(64)

v
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_J

T 1 must be taken as the highest possible tie force. From

previous calculations the tie forces are given in the form

of equation (16)

_J_ [(Ay)j-IA Tj = Tj = Cj - (6Y) Jl COS 8j
(65)

For the case of only one strut, there is only one

possible tensile stress, because _Yo and AY2 are zero.

For x = L/2 the sine series for the deflection gives

Yl = (al " a3)

Again Ay is replaced by y and the angle 8 by _. The length

of tie 1 is expressed in terms of L. Introducing now the

value of Yl in equation (65) yields

2E 1 cos a sin a

_I = (aI - a 3) (66)
L

This equation gives a constraint for the maximum

value of a in the tension ties. For convenience the weight

function for the tension ties is written in the form

/hhh
(67)

4.2.3 Weight of the strut assembly

The struts are assumed to be simple columns,

welded on a ring with a weight W4, which for simplification

is chosen to be the same as the weight of one of the

struts. The m struts at the midpoint of the column are
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assumed to fail as simply supported columns.

furthermore that buckling occurs elastically

Assuming

with tan a

R 8o 3 3 w k 2 E 2 R

j = _ k2 E2 and _ _ 8 h 2

1 4

= 2__h it followsthatj = tan2_

(68)

Therefore

3 I k 2 E 2 R

2 tan2a L 2

The weight of the strut assembly is now

W 3 = (re+l) w A h = (m+l) w

and

W3 m+l tan s R

R L tan a

a 2

(69)

Introducing equation (69) for the optimum stress yields

W3 5/3_Rh2/3 [ 2 ]V " _ w(tans) _jj _ k2 E2

1/3

(70)

where R is the reaction force given in equation (46). The

specific weight of the strut assembly is assumed to be the

same as for the column.

Equations (63), (67), and (69) combined give the

total weight as
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W mw m++ ElC°Ssk-_ --/+ ____(tans_ / 3 2 1/3

(71)

Rewriting the equation for the reaction force R yields

R 4 AIE 1

j = L3 (al - a 3) sin2s
cos s B

At the onset of buckling, the theory gives only

the buckling shape, but does not specify a fixed magnitude

of deflection. It is assumed that the struts buckle when

y/L reaches a value given by

_y_ 1 (72)
L " l-_

After completing the calculation it must be

ascertained whether or not the tension ties are stressed

to a value which is below the yield stress. To do so,

equation (66) must be used.

with the above assumptions for y/L the reaction

force is

L--l/-= _ sin2s cos II Bk, L--"_--- j
(73)

v

Equation (66) takes the form

E 1 cos s sin
= (74)

75
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With the definition of K, and equation (62), the

following is obtained:

or

45 2 AIEI B
_-6 a, = 8 sin2a cos a A

45 2 p
(75)

AIE 1
E_

448 sin2a cos a B

Introducing equation (75) in (73)

R 3. 2 P

j = 5.2T4- L-_
(76)

With equations (75) and (76) the total weight is expressible

in terms of P/L 2, a, and a:

w P mw I 45 _ P

W = + ElC°S_ 448 sin2_ cos a BV

i_k2_____E1 i/3 5/33_ p_/3 2 (tan a) (77)

4.3 Optimization

The minimum weight can be obtained by setting the

derivative of equation (77) with respect to a equal to zero.

:_ W-_ = o (78)
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For simplification, it is assumed that in the follow-

ing calculations the only cases considered are those for

which w I and w are the same. Differentiating equation (77)

with respect to a and simplifying the result in such a way

that the left hand side of the equation contains terms in

a only, yields

1 m (m+l) 56

/sin3acos a tana 2/3 --_ E1 5 k

113
B (79)

The term on the left hand side of equation (79) is

independent of material properties and the number of ten-

sion ties. To find the optimum angle a the function

1 - 2 sin2a 1
f(a) = (80)

sin3a cos _ tana 2/3

must be calculated for different angles. The result is

plotted in Fig. 13. With the help of this figure the opti-

mum angle a can be obtained for all values of P/L 2.

_j

4.4 Method of solution

For any values of the stress o the tangent-modulus

ratio T can be found from any tangent-modulus curve for

typical materials. From equation (61) the structural index

for this particular stress value is obtainable. Choosing

now the number of tension ties as 3 or 4, makes it possible

to calculate the right hand side of equation (79). The
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optimum value of _ can be found now from Fig. 13,and equa-

tion (77) can be solved to obtain the optimum weight of the

column supported by tension ties in the form W/L 3.



SECTION 5

OPTIMUMDESIGN OF THE COLUMNWITH THREE STRUTS

In using the theory for more than one strut it can

be seen that the second buckling mode is always an inde-

pendent solution of the "boom problem." This coincides

with the solution in Ref. i, where it was found that, if

the intermediate supports are spaced symmetrically with

respect to the midpoint, then no matter how many intermed-

iate supporting points are used, the column will always

buckle in the second mode.

Nevertheless, it seems to be possible to arrange

the tension ties in such a way that the ties influence the

load for the second buckling mode also, so that this col-

umn could be designed to have buckling occur in the first,

second, third, or fourth mode. A geometry as sketched in

Fig. 14 results in a constrained second buckling mode,

thereby increasing buckling stresses over the previous

case.

In this new problem the following additional

assumptions are made:

a. The tension ties E-I-C-3-A and 1-2-3 have

the same cross-section and material pro-

perties.

b. The ties l-C and 3-C are hinged at point C,

but cannot move in the x-direction.

31
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xj Again it is assumed that the tensio_ ties have a

pretension of such a magnitude that at the instant of

buckling all ties are stress free, but not relaxed.

Instead of two variables, as in the case of one

strut, four variables, Sl' _2' AI' and A2, must now be

determined. (Fig. 14)

5.1 Buckling theory for the column with three struts

The deflection curve must be introduced with four

terms and reads

2_X 3_x 4_xy = a I sin --- + a 2 sin --_-- + a 3 sin -i-- + a 4 sin

For x = L/4, L/2, and 3L/4 this series yields

yL a I a 3

= Yl = -_- /_ + a2 + T /_

Yl = Y2 = al - a3 (82)
L

x" T

3L

x- T

yl a I a 3 /_-
" Y3 = T /_ -a2 + -_-

The changes in length of the tension ties,

neglecting displacements in the x-direction and assuming

Yo = Y4 " 0 are (Fig. 14)
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_Cl = Yl sinal

• a
Ac 2 = (yl-Y2) slns I

AC2 b " (y2-Yl) sina 2

Ac3 a = (y3-Y2) sins 1

b (y2_Y3) sina 2AC 3 "=

AC4 _ Y3 sinal

Expressing YI' Y2' and Y3 in terms of the series

as indicated in equation (82) and using

AT, = Aj_ AC.

3 cj 3

the following tension stresses in the ties are obtained:

AT 1 = a34 AIE 1 /_ + a2 + _-- / sinsl c°sal

L

a
AT 2

4 AlE 1 -I>+ a 2 + 3 -_-- +
L 1

I)I sina I cosa I

b

AT 2

a

AT 3

4 A2E 2 <_ -I_ + a2 + + sin_ 2 cosa 2
L 1 3 -_"

4 A E ]_ (83)

- 1 1 lal<_-1_-a2 + a3C_ + -/j sina 1 cosa 1
L

AT3b mm

a - + a C/_- sina 2 cosa 2

4 AIEI aft a3 21AT4 = J2 - a2 + -2-- J sin_l c°sal
L

It can be seen, that the forces T a and T b have

different signs. A negative stress cannot exist in a ten-

sion tie, and the above equations must therefore be handled

very carefully.
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For the simplified theory three different cases,

as shown in Fig. 15, must be considered separately.

a. symmetric buckling shape (Y2 > Yl )

b. antisymmetric buckling shape

c. symmetric buckling shape (Y2 < Yl )

This distinction can be made if the structure has

at least one plane of symmetry [5]. For three tension ties

this symmetry condition is not fully applicable, because

the reaction forces, which are defined as forces in the

strut planes and are opposite to the deflection, are de-

pendent on the sign of the deflection. (B = 1 for y < 0,

B = 1/2 for y > 0.) Nevertheless an approximation is made

by assuming that symmetric and antisymmetric modes are

independent.

5.1.1 Symmetric mode shape (Y2 • Yl )

From Pig. 15 it can be seen, that a reaction

force R opposing the deflection in all three struts exists

and can be written as

R1 = [AT1 sin_l - AT2b sins2__
B

[ b T3R 2 = (AT 2 + sins B (84)

R3 = [6T4 sinsl - AT3b sins21
B
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whereas in the case of a column with one strut, for

y > 0

I_ = 1 for four tension ties= 1/2 for three tension ties

y< 0 B = 1 for three or four tension ties

Introducing now equation (83) in (84) yields

R1 =
a 3

4 AIE 1 a I J2 + a2 + J2 sin2al c°sal
L --_- "2-

4 A2E2{ al_l /_) a -a3<l + _)}sin2a2- --'/--2

m

cosa

B

4 A2E 2 la
R2 = _ 1 C2

L
J_)-a3_2 + /_)isin2a2 COSa21

B

R 3 ,,

4 AIE 1 aI a 3

L --2- /[ -a2 + n/--J_ sin2al cosa I

4 A2E 2 I

- aI _i -
L

/[>+ a2-a C1 + _)}sin2a2 cosa,_- 3

(85)

(86)

B

(87)

-.j



36

The following notation will be introduced for con-

venience :

4 AIE 1
CI = sin2al cos_ 1 (88)

L

4 A2E 2
C2 = sin2a2 cos_ 2 (89)

L

Using these equations the spring strain energy can be com-

puted as

U1 = 1/2 [RlY 1 + R2Y 2 + R3Y 3]

.. _ICl(al2 + 2ala 3 + 2a22 + a32 ) (90)

+ C2{a12 (3-2_-)+2a22-2ala3+a32(3+2/2)}l

For a virtual displacement of da k the following

equation is again valid

8Wl 8U _UI

dak = _ dak + _ dak
(91)

As formerly stated there is a clear distinction between

symmetric and antisymmetric buckling modes. Therefore in

this case only virtual displacements da k which are symmetric

modes can be applied and the following two equations are

obtained.
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w4EtI c I2 L 3 al + B l(al+a3 ) + C2 a1(3-2/2") - a
(92)

pw 2 _4EtI c

g-_-_-a 3 = 81
2 L 3

(93)

5.1.2 Symmetric mode shape (Y2 • Yl )

Again, from Fig. 15 the following reaction

forces are obtained

_i[_I+_T2_]sln°iB+_T2bsins

R2 =- [AT2b +AT3b _ sins 2 - FAT2a + AT3a _ sinsl B

R3_T4_T3a]sinoiB+_T3b'ioo2

(94)

Following the same procedure as before the following two

energy equations are obtained

2
P.

-_-L-al -

14EtIc

2 n3 al+4Cl B_l-_)al+C2[(2/_-3)al+a 3]
(95)

9P2

a3 - "4Eric _l+_a3+c2taI C2_ +3)a3]
2 L 3 81 a3+4CI B

(96)
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5.1.3 Antisymmetric mode shape

R 1 " B(_T 1 + AT2a) sina I

R 2 = (-AT2a B - _T3a) sina I

R 3 = (&T 4 + &T3a ) sina I

(97)

For the antisymmetric mode there is only one vir-

tual displacement possible, namely, a displacement in the

second mode.

pw w4EtI

_2___a 2 . c
2 L 3 16 a 2

(98)

+CI{B[a l(/2-1)+2a2+a 3(/_+I)] - [a l(_[-l)-2a2+a 3(J_+l)]}

5.1.4 Fourth mode shape

The fourth mode shape is independent of the

tention ties and the following energy equation is valid

pw216 _4EtI c

-_ a 4 - 256 a 4 (99)
2 L 3

5.2 Bucklin_ theory and optimization

For the optimum design the tension ties must be

arranged in such a way that the first, second, third, and

fourth buckling modes occur at the same buckling force P,
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which is, in this case, the solution of equation (99).

far, it has not been proved which set of equations, (92)

(93) or (95) _ (96), is applicable, but the values of aI,

a2, and a 3 can be found, and it can be checked easily

whether the assumption Y2 _ Yl or Y2 < Yl is valid.

So

5.2.1 Symmetric shape (Y2 > Yl )

For the assumption that Y2 > Yl equations

(92) and (93) together with equation (98) and (99) give a

system of four equations which can be solved.

the solution of equation (99) in equation (92),

(98) yields

Introducing

(93), and

r

15 IC (al+a 3) + C 2 (3-2/_)_-Sa I = B 1 [al
[

_Sa 2 = CiI B[al(/2-1) + 2a 2 + a3(/2+I)]

- [al(/2-1) - 2a 2 + a 3 (/2+I)]_

63 IC (al+a3)
_-- 0a 3 = B 1 + C 2[a 3(3+2/2) - all

where
_4EtI c

L3

(i00)

(I01)
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Nontrivial solutions are only obtainable if the fol-

lowing two sub-determlnants are zero

2 C 1 (i + B) - 248 w 0 (102)

_ 8 - B[CI + C2(3-2/2) ]

B (C2 - CI)

B (C2 - C I)

63T 8 - B 1 + C2(3+2/

= 0

(103)

In solving these two equations the following is

obtained

v

B
4.875 _ -2.4609375

cI c2 = e= I+B B
-0.511643

I+B

and, for the two different cases under consideration

m = 4 C 1 = 68 C 2 = 2.01297 8 (104)

m = 3 C 1 = 88 C 2 = 0.93762 8 (105)

Introducing these results in equations (82) and (100)

leads to the following

m= 4
aI = 3.336734 a3 and Y2 - Yl = -0.72977 a 3

(106)

m _ 3 aI = 1.04897 a3 and Y2 - Yl = -1.399857 a 3

(107)
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v

v

For a positive deflection, aI must have a positive sign, so

that for both cases Y2 - Yl • 0. That means Y2 cannot be

larger than Yl and the solution is physically impossible.

5.2.2 Symmetric shape (Y2 • Yl )

In this case the following two sub-deter-

minants must be zero

2 C 1 (i + B) - 248 = 0

_8-4C 1 B<l-_ - C 2 (2/_-3) -C 2

-C 2 63 B CI+_>+ J2+3)_2- 8-4C 1 C 2 (2

(108)

= 0

(109)

For three and four tension ties this results in

m= 4 Cl = 6 8

m= 3 Cl _ 8 8

C 2 = 13.11419 8

C 2 = 2.805837 0

Introducing these results in the energy equations

m=4

m= 3

(ii0)

(lll)

a I = 4.82033 a 3 and y2-y I _ -0.29521 a 3 (112)

a I = 0.851514 a 3 and y2-y I _ -1.4577 a 3 (113)

Again, it is obtained that y2-y I • 0, which agrees with the

assumptions made. Equations (ii0) and (Iii) are
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therefore valid.

5.3 Reaction forces

To calculate the optimum weight, the maximum values of

the reaction forces RI, R2, and R3 are necessary and should

be calculated as functions of the buckling load P.

-._j

5.3.1 Reaction forces for the symmetric mode

In this case a2 = 0 and the equations for the

reaction forces can be written down with the help of

equation (94).

R 2 = C 1 [aI (/_-2)+a 3 (/_+2) ]B+C 2 [a I (/_/-2) +a 3 (/[+2)

For the two different cases of four or three

tension ties the values CI, C 2, BI, and a3/a I have been

calculated previously and therefore the reaction forces can

be found as linear functions of e and a I.

1
m = 4 B = 1 C 1 = 6 ejC2 = 13.11419 e_ a 3 = 4.82033 al

R1 = R3 = 4.687027 e a1

R2 = 0.8715523 8 a I
(I14)
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m = 3 B = 1/2 C1 = 88; C 2 = 2.805837 8ja 3 = 1.174379 aI

R1 m R3

R 2

= 8.194398 8 a1

=-4.088532 8 aI

(115)

5.3.2

are obtainable as

Reaction forces for the antisymmetric
mode

From equation (97) the reaction forces

R 1 = C1 [a I(/5-1) + 2a 2 + a3(/2+i)]

R 2 =-CIB[aI< _ -i>+ a2 + a3( _ +i)] +[alC _ -l_-a2+a3(_l)3

R 3 = C1 [al(/2-1) - 2a 2 + a3(/2+I)]

Independent of the number of tension ties it is ob-

tained that

a 3 = -0.171573 aI

Therefore

m = 4
R1 = - R 3 - 128 a2

R2 - 0
(116)

m= 3
R1 - - R 3 = 88 a 2

R2 = 48 a2

(117)

%.j
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5.3.3 Reaction forces as functions of buckling load P

As in equation (72) an assumption for the maxi-

mum deflection must be made. Introducing the same value as

for the case of a column with one strut results in stresses

in the tension ties of nearly three times the yield stress

of the chosen material. After some trials it is found that

the tension stresses reach the yield stresses of the tie

material for values of P/L 2, which are calculated for the

highest stresses, if a I = L/400 for m - 4, and a I = L/800

for m ffi3.

Assuming, furthermore, that the reaction force

R 1 is the same for the symmetric and antisymmetric mode

gives a constraint for the magnitude of a2.

From equation (99)

2
PI

e = 61-C-E

With these assumptions

-3 -3
m = 4 aI = 2.5 i0 L a2 = 0.976463 i0 L

R1 = 7.2279847 10-3p R 2 = 1.3440432 10 -3

(118)

P

-3
m = 3 aI = 1.25 i0 L

-3
R1 = 6.318396 i0

-3
a 2 = 1.279749 I0 L

P R 2 = 3.1525151 i0

(119)

-3
P
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5.4 Weight assumptions

The weight of the assembled column consists of five

parts. A sketch of the parts is shown in Fig. 16.

Wei@ht of the column

P

Wl w V

5.4.1

5.4.2 Wei@ht of the long wires

(120)

W 2 =

and with equation (88)

EIA 1 =

m w I A 1 L

cos a 1

C 1 L

4 sin 2a I cosal

(121)

W 2 m w I C 1

L--_ m 4 E 1 L sin2al cos

(122)

Again this results in a constraint on e in the tension

ties.

al = T _- + a2 + _" J c°ssl sinsl
(123)

a2 - -_-- _- /2 + a 2 + -_- /2-al+a cosa 1 sins I
(124)
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4EI o3 ]_3 = _-- /2 - a2 + -_-- /2-al+a3 c°sal sinul
(125)

4El [_ a3 1o 4 = _-- /2 - a 2 + -_- /2 cos_ 1 sina I
(126)

5.4.3 Weight of the short wires

W 3 =

m w 2 A 2 L

2 cosa 2

from equation (89)

E2A 2 m

C 2 L

4 sin2s2 coss 2

W 3 m w 2 C 2

L--_ = 8 E 2 L sin2s2 cos2a2

(127)

The constraints for a are, in this case

4E2a2 = --L 1 - a3 -
al a3_-_--/_ - a 2 - -_- sina 2 cosu 2 (128)

a3 14E2 - _d -
a3 = --_-- 1 - a3 + a2 -2-d sins2 c°sa2

(129)
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5.4.4 Weight of the strut assembly at x = L/4
and x = 3L/4

As in the case of the column with one strut

assembly, the struts are assumed to be simple columns with

circular cross section and shall buckle in the elastic re-

gion of the material used.

The optimum buckling load for these simple

columns is given by

1/3

= and 0 = --

h_l _k2E2

(130)

Introducing

L
hl = -4-tansl

yields

The weight of the strut assemblies is now

(131)

I R1 Ltana I

at x = L/4 W 4 = (m+l) w c 4

II
at x I 3L/4 W 4 I (m+l) w

R 3 L tana I

o 4
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With equation (131) and the consideration that R 1 = R3

W4II -R "2/3
1/3

5/3
tans I (132)

5.4.5 Weight of the strut assembly at x = L/2

Here

[_k E 2 Rh_]R2 8_ 3 and = _--

V = _k2E[

1/3

(133)

Introducing

yields

L (tanal + tans2)h = -4-

2_k2E2

(tans I + tans 2)

1/3

(134)

The weight of the strut assembly is therefore

W5 (m+l) (_I 2/3= 4 w (tan_ 1 + tans 2)5/312,klE2 ]

i/3

(135)

_J
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v

5.4.6 Weight of the whole column with three struts

As can be seen from Fig. 16

l W W1 W2 W3 W4 W5

s

P

wj m wI C1 m w 2 C2
+ +

El 4L sin2a 1 cos2_ 1 E2 8L sin2a2 cos2_2

(m+ 1 )
+ --T---- w (tanal) 5/3

+ _ w LVJ wk2E2 (tansl + tans2)5/3
(136)

Assuming again that the tension ties, the column and the

struts, are all made from the same material, then the

weight equation can be simplified to

P m f 2 C1 + c2

a + 8El-----L_sin2al cos2al sin2a2 cos2 2J

+m+l_ 1 _I/3_R I_2/3 5/3jR2_ (

--4--_2k2-_E; L\L--_j 2 (tan_l)T\jj

(137)
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5.5 Optimization

Since CI, C 2, RI, and R 2 are functions of P only,

the weight equation is again a function of P/L 2 with the

angles a I and s2 as parameters. For the optimum design the

partial derivatives of equation (137) with respect to _I

and u2 must be zero.

_al _2

(138)

Differentiating equation (137) the following two equations

are obtained.

2
m C 1 (2 sin _i-I)

E 1 L c°ssl sin31

+

1/3[ i R 3/3

5(re+l)126 ,k2E12] _L--_ tansl 2/3

[

m C 2 (2sin2a2-1)

E1 L cosa2sin3a2

L_I (tan_l + tan = 0
(139)

R 213
+ 5(re+l) [_ 1 (tanal+tana 2) = 0

(140)

For further calculations all trigonometric functions

are expressed as tangent functions. It can be verified that
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2 sln2s -i tan4s -i
=I

sin3s coss tan3s
(141)

Equations (139) and (140) are now

Cl = Z

tan3sl

1-tan4sl

2/3 2/3

tans 2/3 R2

i

2/3

(tana l+tans 2 )

[142)

i- 2/3 2/3]

tan3s2 _(RL__ J
C 2 - 2 Z (tans + tans 2) (143)

l_tan4s2 1

where Z is defined by

l/3

Z = 5(m+l) I _ 2-1 E1 L6 2%k E m (144)

For further calculations the cases m =4 and m = 3 must be

considered separately.

m = 4

With m = 4 and k 2 again chosen as 0.4, equation (144) yields

Z = 0.7661367 E I/3 L

From equation (118)

-3
R 1 = 7.2279847 I0 P

R 2 = 1.3440432 i0 -3 P

_j
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and from equation (Ii0)

C 1 = 6 ® = 3.7011018 ---PL

P
C 2 - 13.11419 8 = 8.0894920 l-

With these values equations (142) and (143) can be simpli-

fied, and after some algebraic manipulations the following

two equations are obtained.

F
l-tan4al 2/3

tan3al = 1.547667 tans I

2/3

+ 0.2520965(tanal+tan_ 2)

(145)

3/2 [l-tan 4 13/2a2 - tana 2 (146)
tanu I = 9.02438888 F L tan3a2

where

m= 3

For m = 3 equation (144) yields

Z = 0.8172125 E I/3 L

From equation (119)

-3
Rq = 6.318396 i0
1

-3
R2 -- 3.1525151 i0

P

P
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and from equation (iii)

P
C. = 8 0 = 4.9351108

-C1

P
C 2 = 2.805837 8 = 1.7307814 %-

With these values, two equations are obtained which must

be solved for a I and a2.

F
l-tan4al

m 1.1318870 tana
1

tan3a I

2/3

+ O. 3560137 (tanal+tana 2)

13/2

3/2 l-tan4a 2

= . _ tans 2
tana I 0 34563669 F L tan3a2

(147)

(148)

Equations (145), (146), (147), and (148) must be solved

for a relatively large number of values of F, and because

equations are not independent the actual calculations

would be very involved. It is therefore advisable that a

computer be used to solve the problem. The solution can

be obtained by using a "Newton Iteration Process."

2/3

(i)
x (i+l) _ x (i) Y (149)

y,[IT

Introducing now the notation

x - tana 2

xI - tana I
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m=4

(Equation (145) can be written as

1 1.547667 2/3

Y = -Xl + 3 F Xl -

x I

y' - _-_X= _Y .aXl
ax I ax

1.092845 - x) (150)

= _Xl, 3_ 2/3 1.547667

xI F
x I x I + 1.0928455 -

(151)

=

!

From equation (146), xI and xI can be expressed in x.

E1 413/2

3/2 - x

xI = 9.025389 F x3 - x

xI' = 3/2 9.024389 F + 3 - 1

(152)

(153)

m- 3

In the same way equation (147) becomes

1 1.131887 2/3

Y = -Xl + _ F Xl

x I
-0.17535375_- x> (154)

y, _ _x I , 3- ---_--

x I

2/3 1.131887 -1/3

x1'+0. 17535375 <l-
3h

F -Xl x--_;

(155)

kj
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And with equation (148)

3/2 F l-x413/2

xI = 0.34563669 F m x3 ] - X
(156)

- 1 (157)

For an initial assumed value of x the values of

x I and x I' are obtainable. The three values x, x I, and

xI' allow the calculation of y and y'.

With equation (149) a new value of x is obtained.

This procedures has to be repeated until a specified

accuracy of x is reached.

For the calculation of the cross sectional area,

the expressions

1 1
-- and 2
sin2al cosu I sin _2 c°sa2

are necessary. Therefore they have also been calculated

by the computer. The computer program listed is in

Appendix II of this paper.

with the optimum angles _i and _2 calculated, the

weight of the column with three struts can be obtained and

plotted against the structural index to give the desired

results.



SECTION 6

CALCULATIONS AND RESULTS FOR THE COLUMN WITH ONE STRUT

6.1 Material properties

For the application of the theory developed on the

previous pages a typical aluminum-alloy and steel are cho-

sen.

Al-alloy

Steel

2024-T4-AI-AIIoy

(material properties, see Fig. i0)

Stainless steel 3/4 hard

(material properties, see Fig. 17)

From Ref. 6 the following material data for the ten-

sion ties are found.

3

Al-alloy Oyield = 60 (ksi) w = 0.10 (Ib/in.)

E = i0.5x106 (psi)

Carbon steel
Oyield I 130 (ksi)

E _ 28.3_I06 (psi)

w I 0.283 (ib/in. 3)

6.2

form

Application for aluminum-alloy

6.2.1 Four tension ties.

With m t 4 and B = I equation (79) takes the

11.9197

f(a) = 1/3 (158)
(P/L 2 )

56
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Considering the fact that at the instant of

buckling the tension ties are stress free as long as there

is no lateral deflection, this allows the definition

P = a A (159)

where A is the cross section of the column.

With this relation equation (75) can be modi-

fied and gives a relation between wire and column cross

sections.

A1 = 8.4554 10 -5

A sin2a cos_
o (ksi) (160)

The weight equation for this particular case

is obtained from equation (77)

+ 0.37766 P 1 2.51037
,

10 6 V sin2a cos2a 10 6

2/3 5/31

L_ (tans) I

(161)

Now all equations necessary for the solution are obtained

w

and the steps which are followed in solving the problem are

shown by solving for one value of a.

For a stress of a = 20 (ksi) Fig. i0 gives

T - 1.0 (162)

Equation (40) gives now the structural index for the simple

column

(1)
P
--_ - 0.45070 (psi) (163)
L _
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In the same way equation (61) gives the struc-

tural index for the optimum column with one strut.

p (II)

= 0.11267 (psi)
(164)

Now f(a) can be calculated and Fig. 13 gives an optimum

value of

= 22.65 ° (165)

The weight of the simple column can be calcula_

by introducing equation (163) in (41)

L .

W

L--_ = 2.2535 (Ib/in. 3) (166)

With equations (164) and (165) all information

is obtained to calculate the weight of the column with one

strut. Equation (161) yields

W

V = 0.6107 (ib/in. 3) (167)

Equation (160) gives

A1 -2

-K = 1.2355 10 (168)

The results for different values of c are noted

in Table 1 in Appendix I.

The constraint for the tension ties is

2 E 1 cos_ sina

aI = (169)
150
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For the example

0.2605 < cos_ sina

or

< 0.4655

. = 65 17 (ksi) (170)
Omi n = 36 47 (ksi) ama x .

Oyield for aluminum wires goes up to 70 (ksi), so that the

wires are safe.

6.2.2

written as

Three tension ties

With m u 3 and B - 1/2 equation (79) can be

6.3572

f(a) p/L 2 T73

Equation (75) in modified form writes

A1 16.9108 10 -5

A sin2a cosa

(171)

(ksi) (172)

The weight equation is

L-_ = w + " (tans)106 J sin2_cos 2 + 106

(173)

The calculations are similar to the calculation

in Section 6.2.1. The results are noted in Table 2 in the

Appendix.

The stresses in the tension ties are

= 67.55 (ksi)ami n = 42.77 (ksi) Oma x
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The tension ties are therefore safe.

The various results for a column with one strut,

made from aluminum are shown in Fig. (18), (19), and (26).

6.3 Application for steel

6.3.1 Four tension ties

With equation (79)

From equation (75)

f(_) = 16.588

(p/L2)i/3 (174)

A1 3.1018 10 -5
-- = (ksi) (175)
A sin2scosu

The weight equation for this case is

IcL_ 213 5131

2958 P
W = w P 0.14012/Ph 1 2 + i. .... _2-/--h (tana)

j + 106 _J)_i_2_oo__ 106 _ / ]
(176)

The results are noted in Table 3 in Appendix I.

The stresses in the tension ties are calculated

as

ami n = 78.635 103 (psi) Cma x = 176.485 103(psi)

_yield for steel goes up to 158 103 (psi), so that for

higher values of P/L 2 (over 2.0) the deflection should be

restricted to a value of L/200.

_j
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6.3.2 Three tension ties

The angle a, the cross section relation AI/A,

and the weight W/L 3 can be calculated using the following

equations:

f(a) = 8.84693 (177)

(p/L2) I/3

A1 7.0061 10 -5

-A- = sin2s coss
(ksi) (178)

w= W P

j ÷
0.21018/P \ 1 + 1.03695

2 ooss 10 6

5/3/p _/3
(tans) qj)

The results are noted in Table 4 in Appendix I. (179

The tension stresses are calculated as

_min = 91.178 103 (psi) ama x = 182.737 iQ3(psi)

Therefore again the deflections of P/L 2 > 2.0

should be restricted to values of L/200.

The various results for a column with one strut,

made from steel, are shown in Fig. (20, (21), and (31).

_j



SECTION 7

CALCULATIONS AND RESULTS FOR THE COLUMN WITH THREE STRUTS

7.1 Optimum angles

With the computer program given on previous pages, the

angles a I and s2 are obtained for various values of F,

which are functions of o.

The computed results are printed in Appendix II.

7.2 Application for aluminum-alloy

7.2.1 Four tension ties

With the definitions of C 1 and C2 [equations

(88) and (89)] and the results for these variables for the

various cases, the cross sections are obtainable. Intro-

ducing E 1 g E 2 = 10.5 106(ib/in. 2) yields

A 1
-- = 0.0881215 10 -3 o (ksi) (180)

A sin21cosa I

A 2
-- = 0.1926069 10 -3 o (ksi) (181)

A sin2s2coss 2

The weight can be obtained from equation (137)

and is written here in such a form that a computer program

can be set up easily.

_j

62



63

W
L--_ 106 = 103

+ 0.35248588 + 0.38483295 17

F1 F 2 J

+ 0.19173222 I
I0 -- (F3 + F4)

where

F1 = 103 sin2al cos2al

F2 103 sin2a2 cos 2a 2

5/3 q7.2279847 Ph 2/3
F3 _ 2 tana I 103 jj

F4 = (tanal + tans2)5/3 _1.3440432
103

(182)

(183)

(184)

(185)

(186)

Again the computing of all necessary values for

the solution of the problem are indicated for one example.

Choosing again a stress of a = 20 (ksi) the

structural index for the optimal column with three struts

can be calculated from equation (98).

p (IV)

V = 0.028168693
(187)

With the help of equations (150), (151), (152),

and (153) the computer calculates the optimum angles _I

and a 2 using the above value of the structural index and

the modulus of elasticity for aluminum to calculate the

value F. The following is obtained:
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-.__J

-j

_i = 25"420o

a2 = 36"012°

(188)

(189)

The calculation of AI/A and A2/A can be done

now with equations (180) and (181).

AI/A = 1.05902 10 -2 (190)

A2/A = 1.37758 10 -2 (191)

with this information given, the computer

solves equation (182)

W 6

j 10 = 0.16701 (192)

The program for the calculation of the weight

is printed in Appendix II for all different cases, dis-

cussed in the next three sections.

The results for various values of P/L 2 are

noted in Table 5 in Appendix I and in the tables containing

the computer results (Appendix II).

7.2.2 Three tension ties

For this case the following two cross section

relations are obtained

-3 a (ksi) (193)
AI/A = 0.117495 io

sin2al coss I
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-3 o (ksi)
A2/A = 0.041209 i0

sin2a 2 cosa 2

(194)

The weight equation is written in a similar

form as equation (182).

w o 0 0000jJ 106 = 10 0.105 + " F1 + " F2

0.15338577
+

104

where

F 1 103 sin2al cos 2= a I

F 2 103 sin2a2 cos 2= a 2

F 3 m 2 tanal 5/3 _6.318396 p_2/3
i0 _ L-T/

/

F4 = (tanal + tana 2)5/3 _3

1525151e

103

(F 3 + F4) }

2/3

(195)

(196)

(197)

(198)

(199)

The results are noted in Table 5 in Appendix I

and in the results of the computer calculations (Appendix

II) .

The various results for a column with three

struts made from aluminum-alloy are shown in Figs. (22),

(23), (24), (25), and (26).

J

7.3 Application for steel

7.3.1 Four tension ties
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Introducing E 1 = E 2 = 28.3
106 (ib/in.2)

yields here for the cross section relations

Am
A = 0.032695 10 -3 _ (ksi) (200)

sin2s i coss I

A2 - 0.0714619 10 -3 _ (ksi) (201)

A sin2 _2 coss 2

The weight equation reads

+ 0.13078098 + 0.14278254j ]
F 1 F 2

0. 098999204 [

i0 (F3 + F4)I (202)

+

where F I, F2, F 3, and F 4 are defined as in equations (183),

(184), (185), and (186).

The results for various values of P/L 2 are

noted in Table 6 in Appendix I and in the tables containing

the computer results (Appendix II).

7.3.2 Three tension ties

The cross section relations are

A 1
-- = 0.043594 10 -3 u (ksi)

A sin2_l coss I

(203)

A 2-- = 0.015289 I0 3 o (ksi)

A sin2s2 coss 2

(204)

-j



67

-j

The weight equation is

W 6 { L_ _cl__ 0 13078916 0.02293438]
L-_- 10 = 103 0.283 + " F1 + F2

+ 0.079197485 I
i0 (F3 + F4) _ (205)

where FI, F2, F3, and F 4 are defined as in equations (196),

(197), (198), and (199).

The results for various values of P/L 2 are

noted in Table 7 in Appendix I and in the tables contain-

ing the computer results (Appendix II).

The results for a column with three struts

are plotted in Figs. (27) , (28) , (29) , (30) , and (31) .

7.4 Check of the tension stresses in the ties

7.4.1 Tension stresses for a construction with

four tension ties

a I = 2.5 i0

From equation (118) it can be seen that

-3 L, a 2 = 0.976463 10 -3 L, a 3 = 0.207455 a I.

In looking at equations (123), (124), (125),

and (126) it can be seen that only a 1

obtained

is critical. It is

a I = 12.44385 10 -3 E 1 cosa I sins I (206)

Equations (128) and (129) again yield only one critical

stress a 2 .
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-3
a 2 = 10.462488 I0 E 2 coss 2 sins 2 (207)

The maximum values of the product coss sins

can be calculated from the computer results

Aluminum

(coss I sinal)ma x = 0.48059 and aI =

(cos_ 2 sins2) max = 0.49867 and a2 =

62.794 (ksi)

(208)

54.782 (ksi)

(209)

Steel

(cosa I sinal) ma x = 0.48223 and a I =169.822 (ksi)

(210)

(cosa 2 sins2)ma x = 0.49882 and a 2 = 147.650 (ksi)

(211)

7.4.2 Tension stresses for a construction with

three tension ties

From equation (119)

-3
aI = 1.25 i0 L, a 2 = 1.27975

-3
10 L, a3 = 0.58789 a I

Again there are two critical stresses a I and a 2

-3
a = 10.73055 i0
1 E 1 cosa I sinu I (212)

-3
a2 = 0.41028 i0 E 2 coss 2 sina 2 (not critical)

(213)

J
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With the maximum values of cosa I sins I the

maximum tension stresses are obtained as

Aluminum

(cosa I sinal) max

Steel

= 0.48566 and a i = 54.720 (ksi)

(214)

(cos_ 1 sinal)ma x = 0.48428 and Ul = 147.064 (ksi)

(215)

The results indicate that the maximum de-

flections are chosen in such a way that the tension ties

are never loaded beyond their yield strength.



SECTION 8

DISCUSSION AND CONCLUSIONS

The weight curves Figs. (29) and (31) indicate that

for small values of the structural index the column sup-

ported by tension ties is up to 50% lighter than the sim-

ple column. To demonstrate for which values of the struc-

tural index a wire supported column configuration is

advisable, a weight savings factor is defined as

weight of the simple column - weight of the wire supported
column

"vy

weight of the simple column

Using the weight curves in Figs. (29) and (31),

respectively, this weight saving function can be found

graphically and is plotted in Figs. (32) and (33) for the

two used materials. There is hardly any difference be-

tween the weight of the column with three and four ties,

so that the weight figures and the weight saving figures

are drawn without the distinction between a column with

three and four ties.

During the calculations it was found that the

angles a are always smaller than 45 ° and in a very reason-

able region. The cross sectional area of a tension tie is

usually from one to five percent that of the central

column.

70
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v

Both values (the tie angles and tie cross sections)

increase with increasing values of the structural index,

where the greatest rate of change occurs for very small

values of the structural index. This indicates that the

additional weight from the tension ties also increases

rapidly for these values of the structural index [Figs.

(18), (20), (22), (23), (27) , (28) ].

If typical design parameters (P and L) are given,

a decision must be made whether a column with three or one

strut is chosen. When the weight curves indicate signifi-

cant weight savings and weight savings are important for a

particular problem, it seems reasonable to calculate the

column with three struts first. Except for large values of

P and very large values of L, the wall thickness of the

central column usually is too small to be manufactured.

In this case the column with one strut must be used.

To indicate how the calculations in this paper can

be used, a typical practical example is calculated.

Assuming that a load of i000 pounds has to be carried over

a distance of i0 feet and that an aluminum construction

with one strut and three tension ties is chosen. This

allows the calculation of the structural index:

P/L 2 = 0.0695 and _P/L 2 = 0.2635
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Fig. (18) gives immediately

= 25.15 °

A 1
m= 1.73 10 -2
A

From the expression for the second buckling mode, equation

(61), the following maximum stress is obtained

E2 3/2
p _ k 2

2

for the given values

O

= 16.34 (ksi)

TO evaluate a an iteration is usually required.

case however Fig. (i0) yields _ = i, so that

In this

o -- 16.34 (ksi)

From equation (159) it is obtained

A w mP = i000 _ 0.0612 (in. 2)

o 1.634 104

Now the cross section of the tension ties is

A 1 = 1.73 10 -2 A = 0.1059 10 -2 (in. 2)

and for a circular cross section

D 1 = 0.0372 (in.)
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From equation (39) it is obtained

-K = p/L2/

1/3

= 394.95

With D/t and A given, the wall thickness and column dia-

meter D can be calculated

t - 0.715 10 -2 (in.)

D = 2.825 (in.)

The result for t indicates that a column with three struts

would be impossible for this particular case.

The required pretension in the tension ties is

obtained from equation (12). Introducing in this equation

sin O 1 = cosa

L

Cl = c2 = 2 COSa

m= 3

E 1 = E c

the following simple equation is obtained

P
T O = = 16 531 A "

3 coss + c

A 1

(Ibs)

k_i

The fact that the weight of the optimal wire

supported column is nearly independent of the number of

tension ties leads to the conclusion that an arrangement
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k r

of four ties does not bring any advantages, so that from

the manufacturing point of view the column with three ten-

sion ties is preferred. Figures (29) and (31) show that

for small values of the structural index P/L 2 the column

supported by tension ties has a significantly smaller

weight than the simple column. Nevertheless it should be

mentioned that the calculated optimum weight for very small

values of P/L 2 cannot be reached in practice because the

optimum ratio D/t reaches values which give dimensions of a

column which is nearly impossible to fabricate. As is

often the case in calculations in optimum design, the re-

sults presented in this paper have to be considered as the

theoretical limit.
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TABLE 1 (a)

Column with one strut, four tension ties,

made from aluminum-alloy.

[ksi]

5

i0

15

20

25

30

1 [psi] _F/L I: simple column

[psi ] i _inch 31"---_1
0.00704

0.05634

0.19014

0.45070

0.88028

1.6527

35 3.5038

40 11.1626

45 153.2218
50 185.1575

0.08391

0.2374

0.4365

0.6713

0.9382

1.2855

1.8718

3.3410

7.2953

13.606

0.00176

0.01408

0.04753

0.11267

0.22007

0.41317

0.87595

2.7906

13.3054

46.2894

0.0419 I

0.1187

0.2182

0.3356

0.4691

0.6427

0.9359

1.6705

3.6476

6.803

0.1408

0.5634

1.2676

2.2535

3.5211

5.5090

10.0109

27.9065

118.2706
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TABLE 1 (b)

Column with one strut, four tension ties,

made from aluminum-alloy.

[ksi]

5

i0

15

20

25

3O

35

40

45

50

15.70

19.20

!

21.20

22.65

23.85

24.95

26.38

28.72

31.83

34.30 i

W/L 3

[ib/inch 3]

0.0366

0.1488

0.3395

0.6107

0.9645

1.5225

2.8124

7.7527

32.709

102.356

AI/AXI02

0.5997

0.8278

1.0403

1.2355

1.4136

1.5726

1.6729

1.6705

1.6098

1.6115
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Column

TABLE 2

with one strut, three tension

made from aluminum-alloy.

ties ,

[ksi]

5

i0

15

20

25

30

35

40

45

50

18.83

22.30

24.45

26.12

27.45

28.70

30.22

32.50

35.42

37.40

W/L 3 AI/AXI 02
__ ll__bf_i_nc_h3_l..............................

0.0367 0.8573

0.1499 1.2694

0.3429 1.6266

0.6185 1.9438

0.9794 2.2420

1.5500 2.5080

2.8392 2.6842

7.9345 ! 2.7782
!

33.5885 i 2.7804

105.4972 2.8851

_J
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-__j

Column

TABLE 4

with one strut, three tension ties

made from steel.

[ksi]

5

i0

15

2O

25

30

35

40

5O

60

70

8O

90

1oo

Ii0

120

130

135

_0

14.45

17.35

19.40

20.80

22.0

22.85

23.70

24.45

25.72

27.0

28.27

29.35

30.35

31.35

32.30

33.43

35.15

37.80

W/L3 3

[ib/inch ]

0.01435

0.05808

0.13243

0.23722

0.37319

0.54095

0.74073

0.97304

1.53041

2.50986

4.0809

6.2036

9.1587

13.3948

19.8377

32.3650

72.7204

359.551

AI/AXI02

0.5809

0.8254

1.0099

1.1886

1.3461

1.5125

1.6575

1.7970

2.0650

2.2890

2.4828

2.6766

2.8620

3.0294

3.1932

3.3186

3.3607

3.1865
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a.

TABLE 5

Cross-sections for a column with three

made from aluminum-alloy.

struts

[k_i] A!/AxI02 A2/AxI02

Aluminumf four tension ties

5 0.47614 0.49210

i0 0.69934 0.80191

15 0.89810 1.I0036

20 1.05902 1.37758

25 1.21974 1.65809

30 1.36118 1.92900

35 1.46380 2.18063

40 1.49475 2.39816

45 1.48305 2.60242

50 1.52370 2.83670

b. Aluminum, three tension ties

5 0.58023 0.28604

i0 0.85935 0.42299

15 1.11027 0.52447

20 1.31643 0.61119

25 1.52328 0.69771

30 1.70715 0.77123

35 1.84640 0.81951

40 1.90227 0.81966

45 1.90997 0.78856

50 1.91193 0.78987
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TABLE 6

Cross-sections for a column with three struts,

four tension ties, made from steel.

2 2
[ksi ] AI/AXI0 A2/AxI0

5

i0

15

20

25

3O

35

4O

5O

60

70

8O

9O

i00

ii0

120

130

135

0.28273

0.40425

0.50193

0.58822

0.66732

0.74127

0.81176

0.87901

1.00729

1.11332

1.20580

1.29687

1.38358

1.46535

1.54110

1.59827

1.61218

1.50938

0.26323

0.40324

0.52712

0.64402

0.74832

0.86311

0.97527

1.08232

1.29371

1.48636

1.68601

1.88009

2.08258

2.26512

2.45446

2.63642

2.79976

2.83423



84

k

TABLE 7

Cross-sections for a column with three struts,

three tension ties, made from steel.

[k_i] AI/AXI02 A2/AxI0_

5

i0

15

20

25

30

35

40

50

60

70

80

90

i00

ii0

120

130

135

0.34190

0.49116

0.61226

0.72005

0.81920

0.91945

1.00146

1.08718

1.25084

1.38845

1.51025

1.63065

1.74650

1.85632

1.95833

2.04084

2.07327

1.96292

0.17257

0.24423

0.30337

0.35022

0.39497

0.43648

0.47557

0.51278

0.58295

0.63868

0.68539

0.73089

0.77342

0.81226

0.84622

0.86828

0.86065

0.77879
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FIG, I Structural parts of the column supported

by tension ties.
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0 tension ties after\
\ axial deformation

of the column
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FIG. 2 olometry of the wire supported column with

n-1 struts.
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FIG.S" Equilibrium of forces at the end of the column (x=L).
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a = (Ay)j- (_hY)J-I

b = (Ax)j- (ax)j.I
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F IG.5" Deflection geometry at the plane of strut J.
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$JOB CC69AG 002 015 HAGEN MAUCH BOOM PROBLEM OPTIMU_ ANGLE
SEXECUTE IBJOE

IBJOB VERSION 4

$1BJOB BOOM

$1BFTC 3TIES

BEGIN COMPILATION 0 M LI S
98 F_RMAT (IHI)

99 FORMAT (FLO.q)

lO0 FORMAT (IHO,IOX,FIO.T, IOX,F6.3,1OXtF6.3tIOXtFIO.5,1OX,FLO.5 )

_ TOL_Q.CO001

WRITE (6t98)

I READ {5,99)F

B[= 0.3656367
B2=3.0*BI/2.0

B_=I,I3IBB7

B4= 0,17535375

I0

B5=2oO*B3/3.0 "-
A=2.0/3.0

B=I.O/3.O

X=O.l

XA= (I.o,x._*_*X)P(xoxox}
IX= BI°F*SQRT(F)mXAmSQRT(XA)-X

X2=I-O+B2*FmSQRT(F)*SQRT_XA)*(i.O+3.QI(xmx*x*ki) ............

Y=-XI+L.O/IXI_XI_.XI.)-B3*XIo°A/F-B4°(I.0/(X*XoX)-X)

YI=X2+3oO*X2/(XI*XI°XI*XI)+BSmX2/(F*Xlm*B)+B4m(1,O+3.0/(XmXmX*X))

_ xAz=x-Y/yl ............................
IF |ABS{XAI-X).LT.TCL) GC TO 500

......___X_=X.AI
GO TO I0

A2=ATAN(X)eI80oOI3,I4159

A3_._A_[AN(XI) ...............................
A4= ATAN(X)

..... ___C_I=I,0/___]._N_(A3)*SIN(A3)*C_SIA_L)) ........
C2=I.O/(SIN(A4)mSIN(A4)mCOS(A4))

WRITE .(6tlOQ._ F__ALtA_2_I2C_
GO TO I

.........__
........................................................

BEGIN ASSEMBLING 3TIES 0 M 17 S
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HAGEN MAUCH BOOM PROBLEM OPTIMUM ANGLE

0 M 09 S
.....................

SJOB CC694H 002 015

$EXECUTE IBJOB

$1BJOB 800M

$1BFTC 4TIES

BEGIN COMPILATION

FORMAT {IHI)

FORMAT (FIO.g)

98

99

I00 FORMAT (IHO,10X,FI0.7tlOX,F6.3,10X,F6.3,10X,FI0.5,10X,FI0.5 )
TOL=O.O000I

WRITE (6t98)

l READ (5,99)F

Bl= 9.025389
B2=3.0*Bl/2.O

B3= 1.567667

B4= 1.092845

B5=2.O_B313.0

A=2.0/3.0
..........................

B=l.O/3.0
X=O.l

lO XA= (l.O-X*X*X*X)/(X*X*X)
XI= BleF*SQRT(F)*XA*SCRT(XA)-X
XZ=I.O÷BZ*F*SQRT(F)*SQRT(XAI*(I.O+3.0/(X*X*X*X)}
Y=-X[+l°O/|Xl*Xl*X1)-B3*Xi**A/F-B4*(l°O/(X'*X*X)-X)

XAI:X-YIYI

IF (ABS ( XA X- X )fLY_Y_C)-_ff-_-_ ................................

x=xAt

GO TO l0

500 AI=ATAN(

A2=ATAN(

A3: ATAN

A4= ATAN

CI=I.O/(

C2=1.0/(
WRITE I6
GO TO I

END

BEGIN

Xll*lBO.013.1415g
x _. teO. 6i_f_i-_ ..................................................
(Xl)

..............................................

(X)
SIN(A3)*SIN(A3I*COS(A3))

SIN(A4)*SIN(A4)*COS(A4))

,1oo_ F _A__._ ................................

ASSEMBLING- _TI-ES ......O--M--fg-T ..............
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SJCB CCL94G CC2

SEXECLTE IBJ[B

$1BJEE _CC_

$1BFIC MThB

BEGIN COMPlLATICK

g8

q9

tO0

10

2C

21

22

015 hAGEN _AUCP 8CC_ PRGBLFM WEIGHT

C _ 05 S

FCRF'AT (1F_I)

FCR_AT (FI4.0,FI6.C,FIC.C, I5,FI2.G)

FCR_AI { I_O, 1CX tFS.l ,FIB.gtFIC. 3,FI0° 3,F15.5)
CI=5.0/3.0

C2=2.0/3.f

WRITE (6_98)

REAP, (5,99) A6,AS,AI,N,A2

GC TC (20,21922,23),K

81=0. 1307_098

B2=0.1427_254

B3=O.CqB£qq2C6

B4=7.2279847

B 5= I • 34404 _2

86--.0.283

GC T(_ 30

B1=0.3524_58£

B2=O. 384_32_)5

B3=O.lq27460

84=7.2279847

B5=I.36_0432

B6=O. 105

GE T[ 30

B I=G. ]307_916

B2=0.02293638

83-0.079197485

B4=6._183£6

B5=3.1525151
B6=0o283

GC TC 30
B1=C.3525C792

B2=0.618! 36cg5

1_3=0. 15338577
84_6.718396

E5=3.152515|

B6=C. ].05
A3=^1-3. 1415o/180.0
A4=A2,,3. 14159/180.0

GI= SINIA3}

G2= SIN (A4)

G3-SQRT (I .O-G 1*G I )

G4=S(_RT (I .O-G2,,G2)

FI=ICOO.C,G1,GI-II.C-GI'GI)
F2= ICCO.O*G2"G2* (I.O-G2"C2)

F3-_2.0_' (GI/G3),*CI* { e4,AS/IOCC.O ),,C2

F4= (G t/G3+G2/G4 ),,CI * (BS*AS/I000.0 )**C2

XA=ICCO.C*B6,{A5*{ I.C/A6+BI/FI+B2/F2)+R3*(F3÷F4)/tO.O)

kRITF (6, ] CO) A6,A5 _AI ,A2, XA

GC TC 10

ENC

ASSE¢_BLING _TWB 0 _ I! S

23

30

EEGI_
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